CHAPTER 11:

CYLINDRICAL COORDINATES

11.1 DEFINITION OF CYLINDRICAL COORDINATES
A location in 3-space can be defined with (r, 6, z) where

e (r,0)isalocation inthe xy plane defined in polar coordinates and
e zistheheight in units over the location (r, 8)in the xy plane

Example Exercise 11.1.1: Find the point (r, 6, 2) = (150°, 4, 5).

Solution: Starting with § = 150° we can obtain all the points consistent with § = 150° on the xy
plane.

Of those points where 8 = 150° on the xy plane, we can find the point that is 4 units away from
the origin. I.e., the point consistent withr = 4.



If we move 5 units directly upward from (r, 8) = (4, 150°) in the xy plane, we obtain the point
(r, 6, 2 = (4, 150°, 5).

z

(.8, z) = (4,150°, 5 @@ 6
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11.2 CONVERTING BETWEEN CUBIC AND CYLINDRICAL
COORDINATES

Asboth (x, y) and (r, 0) reside in the xy plane we can use the same diagram we used in chapter 9

that shows a location in both rectangular and polar coordinates.



From this diagram, the following relations obtained with polar coordinates remain unchanged:

x = rcos(0),

e y=rsin(0),
e x4+ y?=r2o0rr=,/x2+y?and
e tan (6) =§ or  =tan?! (%) when (X, y) is in the first or forth quadrant and

0 =tan~?! (% + m when the point (X, y) isin the second or third quadrant

The variable z is the height over the xy plane in both coordinate systems and correspondingly
remains unchanged.

11.3 CYLINDRICAL CUBES

We refer to (X, Y, 2) as cubic coordinates since the set of points satisfyinga<x<b, c<y< d
ande<z< fwherea, b, ¢, d, eand f are al constants will form a cube. Hence, our expectation is
with appropriate selection of the constants a, b, ¢, d, e and f, the set of points satisfyinga <r <b,
c<fd< dande<z< f will represent either acylinder or acylindrical solid.
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Example Exercise 11.3.1: Find the cylindrical solid associated with 3 <r <6, E <0<— and 2

<z<5.

Solution:



In the above graph, the set of pointswherer = 3, r = 6 and r equal to various values between 3
and 6 are shown in blue. The set of points where 6 = g , 0= %“ and 0 equal to various values
betweeng and %“ are shown inred. The set of points where both 3 <r <6 and g <0 S%“ will be
the intersection of the blue and red regions as is outlined in black in the following diagram.

For each point in the polar region defined in the xy plane above, we wish all points with a height
betweenz= 2and z= 5. Thiswill result in the cylindrical cube shown below.

11.4 APPROXIMATING THE VOLUME OF A CYLINDRICAL CUBE



The region associated with the set of points where r, 6, and z go from one constant to another
constant is often referred to as a cylindrical cube

If we consider the cylindrical cube 5 <r < 6, 2?“ <0< 3?“ and 1 <z <4 we can start with the

olar rectangle 5 <1 <6, 2 <9< ¥ shown in the following diagram. Remember from section
p g s s

9.5 that as Ar — 0 and A9 — 0, a polar rectangle will come to resemble a rectangle with area
length times width. As aresult, it is not uncommon to approximate the area of a polar rectangle
with length times width.
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In the polar rectangle above, the top and bottom sides are two arcs with angle Ag = g The

bottom arc hasradiusr = 5 and the top arc has radiusr = 6. Remembering that the length of an
arc is given by the angle of the arc measured in radians multiplied by the radius of the arc, we
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find that the bottom arc has length 5 = g =7 and the top arc has length 6 * s Both the left and

right sides both have Ar = 1. Hence if we use smallest r associated with the region, the
approximate area of the polar rectangle will be length * width = m * 1. If we use the largest r
associated with the region, the approximate area of the polar rectangle will be ngth * width =
(6 * g) * 1. The set of points (X, y) in this polar rectangle with values of z satisfying 1 <z<4
will produce the cylindrical cube shown in the following diagram. As the area of the base is
approximated by length * width, the volume of this cube can be approximated by length *
width = height. Using r = 5, this will produce Volume = m+ 1% 3. Usngr = 6, this will
produce Volume = 6 * %* 1*3.



height = Az =3

In general, we can approximate the volume of the cylindrical cuberiy <r <r,, 6;<6<6, andz;
<z< zwith Volume = RArA6Az withR = r1, R= r, or R being any r associated with the region
that we have selected. AsAr — 0and A6 — O, this approximation becomes precise.

11.5 USING RIEMANN SUMSAND THE FUNDAMENTAL THEOREM
TO OBTAIN THE MASSOF CYLINDRICAL CUBES

Example Exercise 11.5.1: A cylindrical cube2 <r <6, g <0< %ﬁ and 2 < z< 8 has density =

(rcos(6) + 2) %. Use Riemann Sums with two divisionsin r, 6 and z to approximate the mass

of the cube using the smallest value of each variable to represent a given division. Then express
the Riemann Sum as a triple summation and use the fundamental theorem to find the precise
mass of the cube.

Solution:

Step 1. Divider, 0 and zinto two partsry, r,, 61, 02, z1, z2, Ar, AG and Az
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The divisions in the preceding diagram can also be displayed as two stories which will allow us
to view the divisions in the xy plane.
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First Story: 2<z<5 Second Story: 5<z<8

Indivisions1, 2, 5and 6, r goes from 2to 4 and in divisions 3, 4, 7 and 8; r goesfrom41t0 6. In
divisions 1, 3, 5.and 7, 6 goes from  to ~ and in divisions 2, 4, 6 and 8, & goes from ~ to %" In
divisions 1, 2, 3 and 4, z goes from 2 to 5 and in divisions 5, 6, 7 and 8; z goes from 5 to 8.
Hence, r1=2, r,= 4, 91:5, 92:5, 21=2, =5Ar=2, A9 :Eand Az=3.

Step 2: Find the appropriate numeric approximation for the length, width, height, volume,
density and mass for each division:

In Section 11.4, we approximated the volume of a polar cube with volume = length* width* height
where width = Ar, length = rAd and height = Az The density of each division is given by
density =(rcos(d) + z). Using the minimum value of each variable in each division, the following
two diagrams show the length, width, height and density for the 4 divisions on the first floor and
the four divisions on the second floor.



height=3 | height =3

dens = 4cos(§)+ 2 | dens= 4ces(§)+ 2
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First Floor: 2<z<5
8_ e

height =3

dens = 4c05(§)+5

height =3

dens = 4:05(%) +5

Second Floor: 5<z<8§

The length, width, height, volume, density and mass of each division are summarized in the
following table:



Division | Length | Width | Height | Volume Density Mass
(m) (m) (m | (m° (%) (k)
1 2x7=2| 2 3 3 ZCOSG) +2 (ZcosG) +2) 31
2 2%7=2| 2 3 3 Zcos(g) +2 (ZcosG) +2) 31
3 4x>=m| 2 3 6 4cos(§) +2 (4005(2) +2)6m
4 4x=m| 2 3 6m 4cos(§) +2 (4005(2) +2) 61
5 2% =2 2 3 31 ZCOSG) +5 (ZcosG) +5) 37
6 2+3=" 2 3 3 2cos(§) +5 (2cos(§) +5)3n
7 4x==m | 2 3 6m 4cos(§) +5 (4005(2) +5) 61
8 bx==m | 2 3 6m 4cos(§) +5 (4005(2) +5) 61

Step 3: Add the masses of the eight divisions to approximate the total mass of the solid:
Mass =~ (Zcos G) + 2) 3+ (Zcos (g) + 2) 3m+ (4cos G) + 2) 6T + (4cos (g) +
2) 6T + (Zcos G) + 5) 3+ (Zcos (g) + 5) 3+ (4cos G) + 5) 6T + (4cos (g) +
5) 6™

Step 4: Repeat Step 2 using ry, 1o, 04, 02, 71, 2, Ar, A6 and Az instead of numerical values as
appropriate. The volume column has been left out of the following table for ease of viewing.

Division | Length | Width | Height Density Mass
(m) (m) (m) (%) (ka)
1 A0 Ar Az ricos(0:) +z (ricos(01) + z;) r1 ABArAz
2 A0 Ar Az ricos(02) +z (ricos(0,) + z;) r1 ABArAz
3 rA0 Ar Az r.cos(01) +z, (rocos(01) + z1) ro ADArAz
4 rA0 Ar Az r.cos(02) +z, (rocos(0,) + z1) ro ABArAz
5 A0 Ar Az ricos(0;) + z (ricos(01) + 25) r1 ABArAz
6 A0 Ar Az ricos(0z) + z (ricos(0,) + 25) r1 ABArAz
7 rA0 Ar Az r.cos(0;) + z (rocos(01) + 25) ro ADArAz
8 rA0 Ar Az r.cos(02) + z (rocos(0,) + 25) ro ADArAz

Step 5: Add the masses of the eight divisions to approximate the total mass of the solid partsry,
I, 91, 92, 2, Z 2, Ar, A and Az



Mass~ (1, cos(0,) + z,) ry ABArAz + (r; cos(0,) + z;) ry AOArAz + (r, cos(0,) +
z,) ry AOATAz + (r, cos(0;) + z4) r, AOArAz + (ry cos(0,) + z,) r{ AOArAz +
(r1cos(0;) + z,) ry AOArAz + (ry cos(0,4) + z,) ry AOArAz + (1, cos(0,) +

Zz) L) ABATrAz

Step 6: Express the approximate mass in Step 5 as atriple summation:

Mazs w [(r,1 cos(?,1 ) + £,1 ), 1 AGAFAZ + (r ] cos(F,2 3+ £1 Y1l ABArAZ] + [(F 2 cos(f,1 )+ Z
ra z

By grouping the[..], we obtain:

2 2 2
Mass ~ Z(ricnsﬁﬁ'k] + z; JryABATAZ + Z[[rzcns(ﬁ'k] + z; JrpABATAZY] + {Z (ryjcos(8y) + z5 )
k=1 k=1 k=1

By grouping the{..}, we obtain:

Mass~ Y2, Y%_;(rjcos(0y) + 2z, )1 ABATAZ + Y2, Y _ (7 cos(8y) + z;)rj AOATAZ
Grouping these last two terms we obtain:

Mass~ Y2 Y2 Y% _,(rjcos(0y) + z;)r; ABATAZ

Step 7. AsAr — 0, A — 0 and Az — 0, this approximation becomes precise and we can apply
the fundamental theorem to find the precise mass of the solid:

Mass = limAz_,o limAr_,o limAQ_,o Zi2=1 Zi2=1 le(=1(riCOS(ek) + Zi)ri AOATAZ

3n
Mass = fzg f;’ Ju* (rcos(6) + z)r dodrdz
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11.6 VOLUMESASSOCIATED WITH INTEGRALSIN CYLINDRICAL
COORDINATES

Example Exercise 11.6.1: Find the volume associated with fon ) 12 f; r dzdrd®

Solution: From section 9.7 we should remember that [ [ drd6 corresponds to Y, Y. r; ABAr
which represents a region in the xy plane and hence the r inside of the integral is interpreted as

part of the volume. Working from the outside inward, the first datum from the integral is fon. .dé
indicating that our volume will reside between 8 =0 and 6 = =.



The second datum from the integral is [ 12 dr indicating that for every value of 9 between 6 = 0
and 0 =, we will accept values of r that betweenr =1andr = 2.

The combination of the two data defined thus far give the following region in the xy plane.

S0

The final datum from the integral is f:; dz. Hence, the volume represented by

fon flz f:; r dzdrd® will be the volume above this region with floor equal to z = r? and ceiling
egual to z=4. Using the relations shown in 10.3, we can see that the surface above the region is
z=r?=x% + y* which is a paraboloid that we have seen many times and that we should be
familiar with. Hence, the solid associated with [ [ [, r dzdrd® is shown in the following
diagram.
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EXERCISE PROBLEMS:

1) Expressthe following integralsin cylindrical coordinates.
f f‘/44 x; f2X+y+10d dydx
f I_W fX +y i dZdydx

J16—x2—
s e

4 2
N ;‘Wf‘ii"yzx +y? dzdydx

\36—x2 36 _
P fﬁfzwz tan~12 = dzdydx

NS f“‘ ()dzdydx

w

0O

y (x + y)dzdydx

O
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2) Expressthe following integrals in rectangular coordinates.

N fz flo_rz(rz)r drd6
fznf [ 1.2 T2cos(6) dzdrdd
fznf f128 * (r®)3 dzdrd6

fsznf IZCSO(SQ()QHS r*cos(8) dzdrd@

O 0O W »

fn f f3rcos(e)+5 r°sin(0) dzdrd6

2rsin(0)+1

M

Al

fEZ fo /. Vi e sin(0) dzdrdé
4



3) Expressthe volume of the following solids as atriple integral in (i) cubic and (ii) cylindrical

coordinates
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The solid betweenz= 1 and z= 10 —r?.

The solid betweenz= 1+ r? and z = 10.

The solid between z=r?and z= 8 —r2.

The solid betweenz=3 + r?and z= 21 —r2.
The solid betweenz=r and z= V18 + r2.

The solid between z= 4 and z= 13 —x* -y~
The solid between z = 2 + x2 + y? and z= 27.
The solid between z = x2 + y? and z = 18 — x% — y2.
Thesolid betweenz = 1 + x2 + y?andz = 9 — x? — y2.

The solid between z = \/x2 + y2 and z = /32 — x2 — yZ2.

4) The density of asolidisx + z% and we wish to obtain the mass of the solid 1 <r <7, g <éf

s?andzszsa.

A. If there are two divisions in each variable and the number of fish is to be
approximated using the minimum value for each variable in each division, find

iy, 0 6 .4 andy usethemtofill inthe following table with numerical values.
Division Length Width Height Density Mass

1

2

3

4

5

6

7

8

B. Usethe values of 1, ¢
6, 1 andz A A9
not change between the two tables.)

6, ., andy tofill in the same table below using rp, 6

and 4z instead of numerical values. (Note, the divisions should

Division

Length

Width

Height

Density

Mass

g WIN|F
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Express the approximate mass numerically.
Expressthe approximate massusingry, 6 .6, ; andz & ¢ anda |

Express the mass obtained in part D intheform »">™>" (_)aaa ¢

nmm oo

Take the appropriate limits to convert the sum in part E to an integral and evaluate the
integral to obtain the precise mass of the solid.

5) The density of fishin acylindrical tank f is xjfz+ P22 and we wish to obtain the

m3

number of fish in the tank described by 2< r<4, T<0 <=, 0<z<4.

A. If there are two divisions in each variable and the number of fishisto be
approximated using the maximum value for each variable in each division, find
r,, 6 .6, ., andy usethemto fill inthe following table with numerical values.

Division Length Width Height Density No. of fish
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B. Usethevaluesofr, 4 .4 ., andy tofill inthe sametable below usingry, 6
6, ; andy & A0 andu instead of numerical values. (Note, the divisions should
not change between the two tables.)

Division Length Width Height Density No. of fish
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Express the approximate no. of fish numerically.
Express the approximate number of fishusingry, § .4 7 andz & A9 andu

Express the number of fish obtained in part D inthe formy™»">" (.)aaa o

Take the appropriate limits to convert the sum in part E to an integral and evaluate the
integral to obtain the precise number of fish.



