
CHAPTER 11: 

CYLINDRICAL COORDINATES 

11.1  DEFINITION OF CYLINDRICAL COORDINATES 

A location in 3-space can be defined with (r, θ, z) where  

• (r, θ) is a location in the xy plane defined in polar coordinates and 
• z is the height in units over the location (r, θ)in the xy plane  

Example Exercise 11.1.1:  Find the point (r, θ, z) = (150°, 4, 5). 

Solution: Starting with θ = 150° we can obtain all the points consistent with θ = 150° on the xy 
plane. 

 

Of those points where θ = 150° on the xy plane, we can find the point that is 4 units away from 
the origin.  I.e., the point consistent with r = 4. 



 
 
If we move 5 units directly upward from (r, θ) = (4, 150°) in the xy plane, we obtain the point  
(r, θ, z) = (4, 150°, 5). 

 
 
 

11.2  CONVERTING BETWEEN CUBIC AND CYLINDRICAL 
COORDINATES 

As both (x, y) and (r, θ) reside in the xy plane we can use the same diagram we used in chapter 9 
that shows a location in both rectangular and polar coordinates. 



 
 

From this diagram, the following relations obtained with polar coordinates remain unchanged: 
 

•  𝑥 = 𝑟𝑐𝑜𝑠(𝜃),  
•  𝑦 = 𝑟𝑠𝑖𝑛(𝜃), 
•  𝑥� +  𝑦� =  𝑟� or 𝑟 = �𝑥� + 𝑦� and 

 
• tan (𝜃) = �

�
 or 𝜃 = tan�� ��

�
� when (x, y) is in the first or forth quadrant and 

𝜃 = tan�� ��
�

� +  π when the point (x, y) is in the second or third quadrant 
 
The variable z is the height over the xy plane in both coordinate systems and correspondingly 
remains unchanged. 
 

11.3  CYLINDRICAL CUBES 

We refer to (x, y, z) as cubic coordinates since the set of points satisfying a ≤ x ≤ b,  c ≤ y ≤  d 
and e ≤ z ≤  f where a, b, c, d, e and f are all constants will form a cube. Hence, our expectation is 
with appropriate selection of the constants a, b, c, d, e and f, the set of points satisfying a ≤ r ≤ b,  
c ≤ θ ≤  d and e ≤ z ≤  f  will represent either a cylinder or a cylindrical solid. 
 
Example Exercise 11.3.1: Find the cylindrical solid associated with 3 ≤ r ≤ 6, �

�
 ≤ θ ≤ ��

�
  and 2 

≤ z ≤ 5.   
 
 
 
 
 
 
 
 
 
 
Solution: 



 
 

In the above graph, the set of points where r = 3, r = 6 and r equal to various values between 3 
and 6 are shown in blue.  The set of points where θ = �

�
 , θ = ��

�
 and θ equal to various values 

between �
�
 and ��

�
 are shown in red.  The set of points where both 3 ≤ r ≤ 6 and �

�
 ≤ θ ≤ ��

�
 will be 

the intersection of the blue and red regions as is outlined in black in the following diagram. 
 

 
 

For each point in the polar region defined in the xy plane above, we wish all points with a height 
between z = 2 and z = 5.  This will result in the cylindrical cube shown below. 
 

 

11.4  APPROXIMATING THE VOLUME OF A CYLINDRICAL CUBE 



The region associated with the set of points where r, θ, and z go from one constant to another 
constant is often referred to as a cylindrical cube   
 
If we consider the cylindrical cube 5 ≤ r ≤ 6,  ��

�
 ≤ θ ≤  ��

�
 and 1 ≤ z ≤ 4 we can start with the 

polar rectangle 5 ≤ r ≤ 6,  ��
�

 ≤ θ ≤  ��
�

 shown in the following diagram.  Remember from section 
9.5 that as ∆r → 0 and ∆θ → 0, a polar rectangle will come to resemble a rectangle with area 
length times width.  As a result, it is not uncommon to approximate the area of a polar rectangle 
with length times width. 
 

 
 

In the polar rectangle above, the top and bottom sides are two arcs with angle ∆θ = �
�
.  The 

bottom arc has radius r = 5 and the top arc has radius r = 6.  Remembering that the length of an 
arc is given by the angle of the arc measured in radians multiplied by the radius of the arc, we 
find that the bottom arc has length  5 ∗  �

�
 = π and the top arc has length 6 ∗  �

�
.  Both the left and 

right sides both have ∆r = 1.  Hence if we use smallest r associated with the region, the 
approximate area of the polar rectangle will be 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑤𝑖𝑑𝑡ℎ =  𝜋 ∗ 1.  If we use the largest r 
associated with the region, the approximate area of the polar rectangle will be 𝑛𝑔𝑡ℎ ∗ 𝑤𝑖𝑑𝑡ℎ =
 �6 ∗ �

�
� ∗ 1 .  The set of points (x, y) in this polar rectangle with values of z satisfying 1 ≤ z ≤ 4 

will produce the cylindrical cube shown in the following diagram.  As the area of the base is 
approximated by 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑤𝑖𝑑𝑡ℎ, the volume of this cube can be approximated by 𝑙𝑒𝑛𝑔𝑡ℎ ∗
𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡.  Using r = 5, this will produce 𝑉𝑜𝑙𝑢𝑚𝑒 =  𝜋 ∗ 1 ∗ 3 .  Using r = 6, this will 
produce 𝑉𝑜𝑙𝑢𝑚𝑒 =  6 ∗  �

�
∗ 1 ∗ 3. 



 
In general, we can approximate the volume of the cylindrical cube r1 ≤ r ≤ r2,  θ1 ≤ θ ≤ θ2  and z1 
≤ z ≤  z2 with Volume = R∆r∆θ∆z  with R = r1, R = r2 or R being any r associated with the region 
that we have selected.  As ∆r → 0 and ∆θ → 0, this approximation becomes precise. 
 
 

11.5  USING RIEMANN SUMS AND THE FUNDAMENTAL THEOREM 
TO OBTAIN THE MASS OF CYLINDRICAL CUBES 

Example Exercise 11.5.1:  A cylindrical cube 2 ≤ r ≤ 6,  �
�
 ≤ θ ≤  ��

�
 and 2 ≤ z ≤ 8 has density = 

(𝑟𝑐𝑜𝑠(𝜃) +  𝑧) ��
��.  Use Riemann Sums with two divisions in r, θ and z to approximate the mass 

of the cube using the smallest value of each variable to represent a given division.  Then express 
the Riemann Sum as a triple summation and use the fundamental theorem to find the precise 
mass of the cube. 
Solution: 
 
Step 1:  Divide r, θ and z into two parts r1, r2, θ1, θ2, z1, z 2, ∆r, ∆θ and ∆z: 

 



The divisions in the preceding diagram can also be displayed as two stories which will allow us 
to view the divisions in the xy plane.   
 

  
First Story: 2 ≤ z ≤ 5 Second Story: 5 ≤ z ≤ 8 

 
In divisions 1, 2, 5 and 6, r goes from 2 to 4 and in divisions 3, 4, 7 and 8; r goes from 4 to 6.  In 
divisions 1, 3, 5 and 7, θ goes from �

�
 to �

�
 and in divisions 2, 4, 6 and 8, θ goes from �

�
  to ��

�
.  In 

divisions 1, 2, 3 and 4, z goes from 2 to 5 and in divisions 5, 6, 7 and 8; z goes from 5 to 8.  
Hence, r1 =2, r2 = 4, θ1 = 

�
�
, θ2 = 

�
�
, z1 = 2,  z2 = 5, ∆r = 2,  ∆θ = �

�
 and ∆z =3. 

 
 
Step 2:  Find the appropriate numeric approximation for the length, width, height, volume, 
density and mass for each division:   
 
In Section 11.4, we approximated the volume of a polar cube with volume = length*width*height 
where width = ∆r,  length = r∆θ  and height = ∆z. The density of each division is given by 
density =(rcos(θ) + z).  Using the minimum value of each variable in each division, the following 
two diagrams show the length, width, height and density for the 4 divisions on the first floor and 
the four divisions on the second floor. 



 
 

First Floor:  2 ≤ z ≤ 5 
 

 
 

Second Floor:  5 ≤ z ≤ 8 

 
The length, width, height, volume, density and mass of each division are summarized in the 
following table: 
 



Division Length 
(m) 

Width 
(m) 

Height 
(m) 

Volume 
(𝑚�) 

Density 
���

��� 
Mass 
(kg) 

1 2 ∗ �
�

= �
�
 2 3 3𝜋  2cos�π

�
� + 2 (2cos�π

�
� + 2) 3𝜋 

2 2 ∗ �
�

= �
�
 2 3 3𝜋 2cos�π

�
� + 2 (2cos�π

�
� + 2) 3𝜋 

3 4 ∗ �
�

= 𝜋 2 3 6𝜋 4cos�π
�
� + 2 (4cos�π

�
� + 2) 6𝜋 

4 4 ∗ �
�

= 𝜋 2 3 6𝜋 4cos�π
�
� + 2 (4cos�π

�
� + 2) 6𝜋 

5 2 ∗ �
�

= �
�
 2 3 3𝜋 2cos�π

�
� + 5 (2cos�π

�
� + 5) 3𝜋 

6 2 ∗ �
�

= �
�
 2 3 3𝜋 2cos�π

�
� + 5 (2cos�π

�
� + 5) 3𝜋 

7 4 ∗ �
�

= 𝜋  2 3 6𝜋 4cos�π
�
� + 5 (4cos�π

�
� + 5) 6𝜋 

8 4 ∗ �
�

= 𝜋  2 3 6𝜋 4cos�π
�
� + 5 (4cos�π

�
� + 5) 6𝜋 

 
Step 3:  Add the masses of the eight divisions to approximate the total mass of the solid: 
 
Mass ≈ �𝟐𝒄𝒐𝒔 �𝛑

𝟒
� +  𝟐� 𝟑𝛑 + �𝟐𝒄𝒐𝒔 �𝝅

𝟐
� + 𝟐� 𝟑𝛑 + �𝟒𝒄𝒐𝒔 �𝛑

𝟒
� + 𝟐� 𝟔𝛑 + �𝟒𝒄𝒐𝒔 �𝛑

𝟐
� +

𝟐� 𝟔𝛑 +  �𝟐𝒄𝒐𝒔 �𝛑
𝟒
� +  𝟓� 𝟑𝛑 + �𝟐𝒄𝒐𝒔 �𝛑

𝟐
� +  𝟓� 𝟑𝛑 + �𝟒𝒄𝒐𝒔 �𝛑

𝟒
� + 𝟓� 𝟔𝛑 + �𝟒𝒄𝒐𝒔 �𝛑

𝟐
� +

𝟓� 𝟔𝛑 
 
Step 4:  Repeat Step 2 using r1, r2, θ1, θ2 , z1, z2, ∆r, ∆θ and ∆z instead of numerical values as 
appropriate.  The volume column has been left out of the following table for ease of viewing. 
 
Division Length 

(m) 
Width 

(m) 
Height 

(m) 
Density 

���
��� 

Mass 
(kg) 

1 r1∆θ  ∆r ∆z r1cos(θ1) + z1 (r1cos(θ1) + z1) r1 ∆θ∆r∆z 
2 r1∆θ  ∆r ∆z r1cos(θ2) + z1 (r1cos(θ2) + z1) r1 ∆θ∆r∆z 

3 r2∆θ  ∆r ∆z r2cos(θ1) + z1 (r2cos(θ1) + z1) r2 ∆θ∆r∆z 

4 r2∆θ  ∆r ∆z r2cos(θ2) + z1 (r2cos(θ2) + z1) r2 ∆θ∆r∆z 

5 r1∆θ  ∆r ∆z r1cos(θ1) + z2 (r1cos(θ1) + z2) r1 ∆θ∆r∆z 
6 r1∆θ  ∆r ∆z r1cos(θ2) + z2 (r1cos(θ2) + z2) r1 ∆θ∆r∆z 

7 r2∆θ  ∆r ∆z r2cos(θ1) + z2 (r2cos(θ1) + z2) r2 ∆θ∆r∆z 

8 r2∆θ  ∆r ∆z r2cos(θ2) + z2 (r2cos(θ2) + z2) r2 ∆θ∆r∆z 

 
Step 5:  Add the masses of the eight divisions to approximate the total mass of the solid parts r1, 
r2, θ1, θ2, z1, z 2, ∆r, ∆θ and ∆z:  



 
Mass ≈ (𝒓𝟏 𝐜𝐨𝐬(𝛉𝟏) +  𝒛𝟏) 𝒓𝟏 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟏 𝐜𝐨𝐬(𝛉𝟐) +  𝒛𝟏) 𝒓𝟏 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟐 𝐜𝐨𝐬(𝛉𝟏) +
 𝒛𝟏) 𝒓𝟐 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟐 𝐜𝐨𝐬(𝛉𝟐) +  𝒛𝟏) 𝒓𝟐 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟏 𝐜𝐨𝐬(𝛉𝟏) +  𝒛𝟐) 𝒓𝟏 ∆𝛉∆𝒓∆𝒛 +
(𝒓𝟏 𝐜𝐨𝐬(𝛉𝟐) +  𝒛𝟐) 𝒓𝟏 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟐 𝐜𝐨𝐬(𝛉𝟏) +  𝒛𝟐) 𝒓𝟐 ∆𝛉∆𝒓∆𝒛 + (𝒓𝟐 𝐜𝐨𝐬(𝛉𝟐) +
 𝒛𝟐) 𝒓𝟐 ∆𝛉∆𝒓∆𝒛 
 
Step 6:  Express the approximate mass in Step 5 as a triple summation: 
 

r z] 
 
By grouping the [..], we obtain: 
 

 
By grouping the {..}, we obtain: 
 
Mass ≈ ∑ ∑ �𝒓𝐣𝒄𝒐𝒔(𝛉𝐤) + 𝒛𝟏�𝒓𝐣 ∆𝛉∆𝒓∆𝒛 + ∑ ∑ �𝒓𝐣 𝐜𝐨𝐬(𝜽𝒌) + 𝒛𝟐�𝒓𝒋 ∆𝜽∆𝒓∆𝒛𝟐

𝒌�𝟏
𝟐
𝐣�𝟏

𝟐
𝒌�𝟏

𝟐
𝐣�𝟏  

 
Grouping these last two terms we obtain: 
 
Mass ≈ ∑ ∑ ∑ �𝒓𝐣𝐜𝐨𝐬(𝛉𝐤) + 𝒛𝐢�𝒓𝐣 ∆𝛉∆𝒓∆𝒛𝟐

𝐤�𝟏
𝟐
𝐣�𝟏

𝟐
𝐢�𝟏  

 
Step 7:  As ∆r → 0, ∆θ → 0 and ∆z → 0, this approximation becomes precise and we can apply 
the fundamental theorem to find the precise mass of the solid: 
 
Mass = 𝐥𝐢𝐦∆𝐳→𝟎 𝐥𝐢𝐦∆𝐫→𝟎 𝐥𝐢𝐦∆𝛉→𝟎 ∑ ∑ ∑ �𝒓𝐣𝐜𝐨𝐬(𝛉𝐤) + 𝒛𝐢�𝒓𝐣 ∆𝛉∆𝒓∆𝒛𝟐

𝐤�𝟏
𝟐
𝐣�𝟏

𝟐
𝐢�𝟏  

 

Mass = ∫ ∫ ∫ (𝒓𝒄𝒐𝒔(𝜽) + 𝒛)𝒓 𝒅𝜽𝒅𝒓𝒅𝒛
𝟑𝛑
𝟒

𝛑
𝟒

𝟔
𝟐

𝟖
𝟐  

 
 

11.6  VOLUMES ASSOCIATED WITH INTEGRALS IN CYLINDRICAL 
COORDINATES 

Example Exercise 11.6.1: Find the volume associated with ∫ ∫ ∫ 𝑟 𝑑𝑧𝑑𝑟𝑑𝜃�
��

�
�

�
�   

Solution: From section 9.7 we should remember that ∫ ∫ 𝑟 𝑑𝑟𝑑𝜃  corresponds to ∑ ∑ 𝑟� ∆θ∆𝑟  
which represents a region in the xy plane and hence the r inside of the integral is interpreted as 
part of the volume.  Working from the outside inward, the first datum from the integral is ∫ . . 𝑑𝜃�

�  

indicating that our volume will reside between θ = 0 and θ = π. 



 

The second datum from the integral is ∫ 𝑑𝑟�
�  indicating that for every value of θ between θ = 0  

and θ = π, we will accept values of r that between r = 1 and r = 2. 

 

The combination of the two data defined thus far give the following region in the xy plane. 

 
 
The final datum from the integral is ∫ 𝑑𝑧�

�� .  Hence, the volume represented by 
∫ ∫ ∫ 𝑟 𝑑𝑧𝑑𝑟𝑑𝜃�

��
�

�
�

�   will be the volume above this region with floor equal to z = r2 and ceiling 
equal to z = 4.  Using the relations shown in 10.3, we can see that the surface above the region is 
z = r2 = x2 + y2 which is a paraboloid that we have seen many times and that we should be 
familiar with.  Hence, the solid associated with ∫ ∫ ∫ 𝑟 𝑑𝑧𝑑𝑟𝑑𝜃�

��
�

�
�

�  is shown in the following 
diagram. 



 
 
 

EXERCISE PROBLEMS: 

1) Express the following integrals in cylindrical coordinates. 
 

A. ∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥�������
�

��������

���������
�

��  

B. ∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥�������
�����

�
���������

�
�  

C. ∫ ∫ ∫ (𝑥 + 𝑦)𝑑𝑧𝑑𝑦𝑑𝑥�������

�����
���������

�
�

��  

D. ∫ ∫ ∫ x� + y� 𝑑𝑧𝑑𝑦𝑑𝑥����

��� ��
��������

���������
�

�  

E. ∫ ∫ ∫ 𝑡𝑎𝑛�� �
�

��
�����

���������

����������
�

��  𝑑𝑧𝑑𝑦𝑑𝑥 

F. ∫ ∫ ∫ ��
�

�  𝑑𝑧𝑑𝑦𝑑𝑥�������

�����
√�������

�
√�

�  

 
2) Express the following integrals in rectangular coordinates.  
 

A. ∫ ∫ ∫ (𝑟�)𝑟 𝑑𝑟𝑑𝜃�����

�
�

�
�

�  

B. ∫ ∫ ∫ 𝑟�𝑐𝑜𝑠(𝜃) 𝑑𝑧𝑑𝑟𝑑𝜃��
����

�
�

��
�  

C. ∫ ∫ ∫ (𝑟�)� 𝑑𝑧𝑑𝑟𝑑𝜃�����

��
�

�
��

�  

D. ∫ ∫ ∫ 𝑟�𝑐𝑜𝑠(𝜃) 𝑑𝑧𝑑𝑟𝑑𝜃�����(�)��
����(�)

�
�

��
��
�

 

E. ∫ ∫ ∫ 𝑟�𝑠𝑖𝑛(𝜃) 𝑑𝑧𝑑𝑟𝑑𝜃�����(�)��
�����(�)��

�
�

��
�

�
�

 

F. ∫ ∫ ∫ 𝑟� 𝑠𝑖𝑛(𝜃) 𝑑𝑧𝑑𝑟𝑑𝜃√�����

�
�

�

�
�

�
�

 

 



3) Express the volume of the following solids as a triple integral in (i) cubic and (ii) cylindrical 
coordinates 

A. The solid between z = 1 and z = 10 – r2. 
B. The solid between z = 1 + r2 and z = 10. 
C. The solid between z = r2 and z = 8 – r2. 
D. The solid between z = 3 + r2 and z = 21 – r2. 
E. The solid between z = r and z = √18 + 𝑟�. 
F. The solid between z = 4 and z = 13 – x2 – y2. 
G. The solid between 𝑧 = 2 + 𝑥� + 𝑦� and z = 27. 
H. The solid between  𝑧 = 𝑥� + 𝑦� and 𝑧 = 18 − 𝑥� − 𝑦�. 
I. The solid between 𝑧 = 1 + 𝑥� + 𝑦� and 𝑧 = 9 − 𝑥� − 𝑦�. 
J. The solid between 𝑧 = �𝑥� + 𝑦� and 𝑧 = �32 − 𝑥� − 𝑦�. 

4) The density of a solid is x + z ��
�� and we wish to obtain the mass of the solid 1 ≤ r ≤ 7, �

�
 ≤ θ 

≤ ��
�

 and 2 ≤ z ≤ 6.  

A. If there are two divisions in each variable and the number of fish is to be 
approximated using the minimum value for each variable in each division, find
121,,rr θ , 2θ , 1z  and 2z use them to fill in the following table with numerical values. 
 

Division Length Width Height  Density Mass 
1      
2      
3      
4      
5      
6      
7      
8      

 

B. Use the values of 121,,rr θ , 2θ , 1z  and 2z to fill in the same table below using 121,,rr θ ,

2θ , 1z  and 2z , r∆ , θ∆  and z∆ instead of numerical values. (Note, the divisions should 
not change between the two tables.) 
 

Division Length Width Height  Density Mass 
1      
2      
3      
4      
5      



6      
7      
8      

 

C. Express the approximate mass numerically. 
D. Express the approximate mass using 121,,rr θ , 2θ , 1z  and 2z , r∆ , θ∆  and z∆ . 

E. Express the mass obtained in part D in the form (...) zr θ∆∆∆∑∑∑ . 

F. Take the appropriate limits to convert the sum in part E to an integral and evaluate the 
integral to obtain the precise mass of the solid. 
 

5) The density of fish in a cylindrical tank f  is  22xyz++  �����
��

 
and we wish to obtain the 

number of fish in the tank described by 2 ≤ r ≤ 4,  �
�

≤ θ ≤ ��
�

,  0 ≤ z ≤ 4.  

A. If there are two divisions in each variable and the number of fish is to be 
approximated using the maximum value for each variable in each division, find
121,,rr θ , 2θ , 1z  and 2z use them to fill in the following table with numerical values. 
 

Division Length Width Height  Density No. of fish 
1      
2      
3      
4      
5      
6      
7      
8      

 

B. Use the values of 121,,rr θ , 2θ , 1z  and 2z to fill in the same table below using 121,,rr θ ,

2θ , 1z  and 2z , r∆ , θ∆  and z∆ instead of numerical values. (Note, the divisions should 
not change between the two tables.) 
 

Division Length Width Height  Density No. of fish 
1      
2      
3      
4      
5      
6      
7      
8      

 



C. Express the approximate no. of fish numerically. 
D. Express the approximate number of fish using 121,,rr θ , 2θ , 1z  and 2z , r∆ , θ∆  and z∆  

E. Express the number of fish obtained in part D in the form (...) zr θ∆∆∆∑∑∑ . 

F. Take the appropriate limits to convert the sum in part E to an integral and evaluate the 
integral to obtain the precise number of fish. 

 


